

... for a brighter future

PVFS at 100 Teraflops

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Talk Outline

- BGP System Overview
- PVFS Deployment on BGP
- BGP Unique I/O Challenges
 - I/O Forwarding
 - High-bandwidth networking
 - Fault tolerance
- Long term challenges and research

PVFS Overview

- Parallel File System
 - Asymmetric Client-Server Architecture
 - High-performance concurrent I/O from many clients
 - Servers manage the filesystem on local disk or shared storage
 - Tight integration with MPI-IO

The Growing PVFS Community

R. Ross, S. Lang, R. Latham, P. Beckman, W. Gropp, R. Thakur, S. Coghlan, K. Yoshii, K. Iskra, and K. Harms

Argonne National Laboratory

- P. Wyckoff and T. Baer Ohio Supercomputer Center
- W. Ligon and B. Settlemyer Clemson University
- M. Vilayannur Ex-ANL PVFS auru
- P. Carns and D. Metheny Acxiom Corporation
- B. Bode Ames Laboratory
- G. Gibson, M. Polte, and S. Patil Carnegie Mellon University
- T. Ludwig, J. Kunkel, and D. Buettner University of Heidelberg

- X.-H. Sun and S. Byna Illinois Institute of Technology
- G. Grider and J. Bent Los Alamos National Laboratory
- P. Honeyman University of Michigan
- P. Geoffray and S. Atchley Myricom Corporation
- A. Choudhary and A. Ching Northwestern University
- D.K. Panda Ohio State University
- A. Malony and A. Nataraj University of Oregon
- J. Nieplocha, J. Piernas-Canovas, and E. Felix
 - Pacific Northwest National Laboratory
- L. Ward, R. Klundt, and J. Schutt Sandia National Laboratories

BGP Example Apps

- FLASH: Astrophysics simulations
 - Writes large blocks of type variables from all nodes
 - Checkpoint 15% of RAM around every 30 minutes
 - Bursty writes of ~ 6TB, with expected bandwidth at ~ 50-100 GB/s
 - I/O using pNetCDF and MPI-IO
- QCD: Computations on particle physics results
 - Large contiguous and non-contiguous reads and writes of data
 - ~ 10 TB per run
 - 100s of files

BGP System Overview

- Endeavour (100T)
 - 8K CN = 16TB RAM
 - 4 SANs (8.8 GB/s)
 - 16 File Servers:
 - 192 GB RAM
 - 40 GB/s Myrinet
 - 512 TB raw storage
- Intrepid (500T)
 - 32K CN = 64TB RAM
 - 17 SANs (78 GB/s)
 - 68 File Servers:
 - 816 GB RAM
 - 170 GB/s Myrinet
 - 4.3 PB raw storage

BGP Single Rack

- 1024 Compute Nodes
 - 4 core 850MHz
 - 2GB memory
 - running IBM CNK
- I/O forwarded to I/O nodes
 - 1 I/O node per 64 CNs
 - Collective Tree Network 1.7GB/s
 - 10GigE NIC to storage
 - running Linux

BGP PVFS Deployment

Storage Nodes

- SAN LUNs exported over IB to storage nodes
- XFS filesystem mounts LUNs on storage nodes

PVFS Servers

- 2 Servers running on each x3655 storage node
- Servers access shared storage over local XFS volume

PVFS Clients

- One client running on each I/O node, handles requests forwarded from compute nodes
- IBM I/O forwarding daemon requires mounting PVFS
- Communicate to PVFS servers over MX and Myrinet

BGP Unique Challenges

- I/O is forwarded from CNs to IONs
 - Usual PVFS setup is PVFS clients on CNs
 - BGP architecture forwards I/O over the Collective Network
- High-speed networking
 - Large 10G switch complex to storage
 - 500 I/O aggregators
- Fault-tolerance
 - Source routed network

I/O Forwarding (without ZOID)

I/O Forwarding (with ZOID)

ZOID: Efficient I/O Forwarding

- Smarter forwarding daemon
 - Don't serialize requests
 - Plug into I/O calls directly
- ZOIDFS: Standardize I/O forwarding interface
 - Can be used on both compute and I/O side
 - Provide vectored I/O interface
 - Allow for hints, stateless file references
- Components:
 - MPI-IO driver for ZOIDFS
 - ZOIDFS to PVFS driver for ZOID daemon
 - ZOIDFS marshaling driver
 - Requires implementing a ZOID tree driver
 - Linux implementation for Linux compute node kernel
 - IBM CNK source available

PVFS over High Speed Networks

- TCP has known problems at scale
- Especially true for BGP I/O node
- Myricom's OpenMX allows MX over Broadcom 10GigE NIC
- BMI-MX module for PVFS
 - written by Myricom's Scott Atchley
- Cray Portals
 - written by Pete Wyckoff

PVFS Fault Tolerance on BGP

- Hardware Support
 - DataDirect SANs provide:
 - Disk-level redundancy (RAID6)
 - Online disk rebuilds
 - Shared access from multiple storage nodes
- PVFS Support
 - Object-based storage allows painless fail-over from one storage node to another
 - Multiple PVFS servers per storage node can be managing different storage areas on the same SAN
 - Address failover support in PVFS clients
 - Clients are stateless, integrate well with standard HA deployments

PVFS Fault Tolerance on BGP

- Failover group of 4 servers
- Failure points:
 - Myri10G NIC
 - x3655 server node
 - IB NIC
 - DDN controller

Client Failover in PVFS

- Standard IP failover: Use IP address aliasing
 - requires ARP update at the switch
- Myrinet is source routed
 - PVFS clients need to provide address failover
- PVFS needs Multi-address support in PVFS
 - Modified config file endpoint format
 - old:

Alias hosta mx://hosta:0:3

new:

Alias hosta mx://hosta:0:3 mx://hostb:0:4 mx://hostc:0:5 mx://hostd:0:6

Clients timeout on address, try the next

PVFS Long-term Challenges

- Storage architectures have greater complexity
 - Solid-state disks
 - Huge memory caches
 - Multi-core SMP systems
- Applications want to create billions (even trillions) of files
 - Scaling issues with directories with millions of entries
- Small files
 - Creating many at once
 - Striping isn't efficient
- Searching and finding data in multi-petabyte storage
 - POSIX interfaces don't work so well
- Monitoring and optimization challenges with larger systems

PVFS Research

- Event driven PVFS servers: coalescing, lock-free queuing
- Small file support: Inode stuffing, Pre-allocation, storage levels
- Giga+ Directories
 - CMU: Garth Gibson, Swapnil Patil, Milo Polte
 - billions of entries in a directory
 - 100K entries/sec
- Multi-dimensional extensions
 - Milo Polte, John Bent
 - Allow SQL-style searching within PVFS
- Complete path tracing and visualization

Conclusion and Info

- PVFS: Deploys easily to increasingly larger scaled systems
- PVFS: Integrates well with I/O forwarding system
- PVFS: Good platform for Parallel I/O research
- Web site: http://www.pvfs.org/